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In many practical applications it is necessary to calculate the first N Fourier-Bessel 
transforms. This paper describes procedures allowing the simultaneous evaluation of these 
transforms. The calculation involves a basic one-dimensional Fourier transform, repeated 
selection of suitable Fourier components followed by successive evaiuation of Fourier series 
coefficients. Determination of L samples of the first N Fourier-Bessel transforms requires of 
the order of 2LN log, N operations and this number is comparable to the operation count 
corresponding to a two-dimensional discrete Fourier transform. 

1. INTRODUCTION 

Fourier-Bessel transforms, also called Hankel transforms, are useful tools of 
mathematical physics and signal processing. They are of considerable importance in 
the analysis of optical systems and in laser beam propagation problems. They are 
extensively used in studies concerned with waves in layered media and are currently 
applied in image processing and seismic data analysis. In many practical situations it 
is desired to calculate a complete set of Fourier-Bessel transforms of a single 
function, and in some cases of technological importance the number N of transforms 
to be determined is large. 

This paper describes a method allowing the simultaneous calculation of such 
transform sets. The method is ideally suited to cases where N is a large number and a 
power of 2. In such circumstances the method provides E samples of the first N 
Fourier-Bessel transforms while it requires of the order of 2LN log, N operations. 
This number is comparable to that corresponding to a two-dimensional fast Fourier 
transform of a sequence of NL samples and in this sense the algoritbms descri 
the present paper may be consider to be “fast.” 

At this point it is worth reviewing previous work concerned with the calcnlati~~ of 
Fourier-Bessel transforms. An early and elegant proposal due to Siegman 111 is 
based on the “Gardner transform.” Argument and integration variables are first 
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replaced by exponential variables and the Fourier-Bessel transform is thus converted 
into a correlation integral which may be evaluated by performing three FFT 
operations. Siegman’s method does not provide transform samples corresponding to 
low values of the transform argument and a “lower end correlation” is required. 
Another drawback of this method is related to the exponential spacing used in 
sampling the function under transformation. The function must be oversampled in the 
range corresponding to low argument values. Despite these difficulties Siegman’s 
method is quite valuable and it has been successfully applied in the analysis of laser 
systems by Sheng [2]. Extensions of Siegman’s idea are also presented by Talman 
[3] in the calculation of several integral transforms. 

Another method of interest is that developed by Cavanagh and Cook [4]. The 
function under transformation is expanded into Gauss-Laguerre polynomials which 
have known Fourier-Bessel transforms. Unfortunately practical applications require 
that a large number of terms be included in the transformed series for convergence. 

A series expansion method is also used by Nachamkin and Maggiore [5] to 
calculate the magnetic field of solenoids. Oppenheim et al. [6] base their method on 
the “projection slice theorem.” They show that the kth-order Fourier-Bessel integral 
may be deduced from the one-dimensional Fourier transform of the “projection”&) 
of the function under transformation onto the real x axis. Numerical implementation 
is not considered in this reference and there are no test calculations. While the present 
paper was being prepared, a more detailed description of this technique was published 
by the same authors [7]. Several procedures are derived for computing the 
Fourier-Bessel transform which all have in common the “projection slice theorem.” 
Only one method is explored in detail and convincing examples are given for the 
zeroth-order transform. The method of Oppenheim et al. has some features in 
common with that developed independently by the present author [8]. However, 
derivation, implementation and applications are quite distinct. 

The Fourier-Bessel transform is calculated in Ref. [8] by performing a one- 
dimensional Fourier transformation, selecting suitable Fourier components and 
adding these components. This algorithm gives accurate results and is probably 
slightly more efficient than that of Ref. [7]. Considerable improvement of efficiency 
is obtained in a second paper [9], in which calculation of the Fourier-Bessel 
transform is based on “dual” procedures. The computation involves two 
complementary algorithms. The first is derived in Ref. [8] and provides the lower- 
order components. The second operates asymptotically and yields intermediate and 
higher-order components. Switching from the first to the second algorithm occurs 
when results of both coincide to a certain acceptable error. Such dual procedures 
involve a number of operations, which is of the order of that required by three to five 
FFT. As a consequence they are comparable in efficiency to Siegman’s method. Dual 
procedures may be developed for computing transforms of any order but in cases 
where one wishes to calculate the first N transforms of a given function it is more 
appropriate to use the technique that we are now going to derive. 

The mathematical basis of our method is formulated in Section 2. The fundamental 
expressions obtained are cast in discrete form in Section 3 and numerical implemen- 
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tation is also discussed. Section 4 contains results of test calculations and i~~~s~~~t~s 
some features of the proposed algorithms. 

2. MATHEMATICAL DEVELOPMENT 

The Fourier-Bessel transform of order k may be defined as: 

The kernel of this transform is the Bessel function Jk with argument cr. T 
fundamental expressions used in this paper to calculate the first N Fourier-Bessel 
transforms may be derived from the following generating function expansion: 

expl$(t - l/t)] = +f PJ,(z). 
k=-a, 

This relation is proved in most special functions textbooks by expanding the ~eft-~~nd 
side in powers of t and showing that successive coefficients of lk are Bessel f~~~ti~~s 
Jk(z) (see, for example [lo]). Expansion (2) yields a useful form if we snbst~t~te 
t.= p: 

tm 
@ sin 0 _ - C eikeJk(z). (31 

k=-cc 

Now let us replace z by {r, multiply both sides of (3) by f(5) [ and integrate from 0 
%O 00: 

The Fourier-Bessel transforms of f(C) are made apparent 
integration and summation operations : 

Fk(r) represents the kth-order Fourier-Bessel transform as defined by expression (I). 
Now let 4(v) designate the one-sided Fourier transform off(c) <: 
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then expression (5) becomes 

#(r sin 0) = F elkoF, 
k=-cc 

(7) 

The function #(r sin 0) is periodic with a period of 2n and its complex Fourier-series 
expansion forms the right-hand side of (7). Thus the Fourier-series coefficients may 
be obtained from 

Clearly the Fourier-Bessel transforms may be calculated as the Fourier series coef- 
ficients of #(r sin 19). Expressions (6) and (8) define the basic algorithm developed in 
the present paper. 

In some circumstances it is convenient and more efficient to use a variant of 
expression (8). Observing that #(r sin 6) is an even function with respect to 6 = 742 it 
is a simple matter to show that 

Fk(r) = Gk(r) f (-l)k G-,&h (9) 

where 

Gk(r) = -$~~~,, #(r sin 0) ePike d6. 

Expressions (6), (9) and (10) are most useful in the determination of even or odd 
transforms. When used in place of (6) and (S), they slightly improve the computation 
efficiency. 

3. NUMERICAL IMPLEMENTATION 

A. Basic Algorithms 

Equations (6) and (8) or (6), (9), (10) f orm the basis of the class of numerical 
algorithms described in this section. For practical application it is essential to 
discretize the functions and integrals appearing in these relations. 

Let d[ designate the sampling period and let f(n) represent the following discrete 
sequence : 

for it = O,..., M/2 - 1, 

for n = M/2,..., M - 1. 
(11) 



FOURIER-BESSEL TRANSFORMS 247 

The discrete Fourier transform off(n) n 

M-l 
&m) = x f(n) nei2nmn’M, 

il=O 

(12) 

may be evaluated by performing a one-dimensional FFT. Now iet &(I?z) represent the 
continuous transform (6) sampled at a constant rate l/& and scaled by l/(NJ2: 

16”(m) = $wm/(4*. (W 

If Aq and AC satisfy the standard compatibility rule AQ A(= 271/M, the one-si 
Fourier transform T(m) may be estimated by the discrete Fourier transform (12): 

G4 = &4. (141 

We now calculate the Fourier Bessel transforms FJY) by making use of expressive 
(6). Actually we shall seek estimates of these transforms for a set of discrete values of 
r: 

r, = ZAr, I = 0, l,..., L - I. 

It is convenient (but not essential) to relate the sampling period Ar to Ai by 
Ar LIP = 2n/iV, where N is an integer smaller or equal to M. In these circumstances Br 
is also related to the sampling period used in the Fourier transform (13): 

Ar = (M/N) All. 

It is now possible to generate a sampled and scaled Fourier 

Fk:k(l) = FkW-)/W12, I = 0, l,..., L - 1, 

and these sampled values may be estimated by replacing the continuous inte 
expression (8) by a discrete Fourier transform: 

where 6j ==jhjS, j= 0, l,..., S - 1 designate S angles equally spaced on the LO, 2x1 
interval. S is an integer, preferably a power of 2, its value being determined by 
consideration of accuracy and computation time. Typically S and M should be of the 
same order of magnitude. 

It is now necessary to relate $(EAr sin 8i)/(A~)2 to the available estimates of the one 
sided Fourier transform i(m). There are at least two simple ways for doing this: 

(a> nearest-neighbour interpolation, 
(b) linear interpolation. 



24x SGBASTIEN M. CANDEL 

B. Determination of #(ZAr sin Oj)/(AC)’ by nearest-neigbour interpolation 
In the first method we seek the Fourier component $[m,(j, Z)] corresponding to a 

transform argument whose value is closest to ZAr sin Sj. To perform this selection it is 
necessary to distinguish two cases. 

1. The Fourier argument IAr sin 8j is positive or vanishes. In this situation 
0 <j < S/2. Here we seek an integer m,(j, 1) such that m,(j, 1) Ay stands as the best 
approximation to 1Ar sin Bj, 

Now let us define the following sequence: 

dCj, Z) = Z(Ar/Ay) sin 8j = Z(M/N) sin Bj, 0 <j < S/2. 

Then it is a simple matter to show that m,(‘j, I) may be obtained from 

m& I) = Int [d(j, I) + $1 

(18) 

(19) 

where Int(.) designates the integer part of its argument. 

2. The Fourier argument ZAr sin Bj is negative. In this circumstance 
S/2 + 1 <j,< S - 1 and it is worth observing that 

sin ej = - sin BsPj for S/2+1<j<S-1. 

We now have to find an integer m,(j, Z) such that -[M - mJ’j, Z)] Ay provides the 
best approximation for ZAr sin ej. It is not difficult to show that 

m,(j, Z) =M- Int[d(S -j, I) + +] 

= M - m,(S -j, I). 
(20) 

Expressions (19) or (20) determine m,(j, Z) and the Fourier-Bessel estimates are 
directly obtained from: 

$k(Z) = $ ‘2’ $[m,u, Z)] eCikj2”lS. 
J-0 

(21) 

It is worth noting that the computation of pk(Z) at a fixed value of Z only requires 
that S/2 + 1 values of m,(j, Z) be available at a time. This set of integers is in turn 
obtained from d(j, I), j = 0, l,..., S/2 and as a consequence the selection of the 
suitable Fourier components $[m,(‘j, Z)] only requires an additional storage of 
S/2 + 1 real numbers. Further economy of storage and computation time may be 
achieved by noting that 

d(j, I) = d(S/2 -j, 1) for j = S/4 + l,..., S/2. (22) 

Using this feature it is only necessary to calculate and store the first S/4 + 1 values 
of d(j, I) corresponding to j = 0, l,..., S/4. Furthermore, ddj, Z + 1) may be obtained 
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from d(j, 1) by a simple recursion relation. Indeed from the definition (19) of&j, E) it 
is possible to deduce 

dO’, I + 1) = dO’, I) t ccj), (23) 

where c(j) = (M/N) sin Bj. 
Clearly dG, 1 + 1) is determined from d(j, 1) by performing a single addition The 

set c(j), j = 0, l,..., S/4 is initially calculated and stored and the recnrsio~ 
(23) starts from d(j, 0) = 0, j = 0, l,..., S/4. 

At this point it is appropriate to discuss the choice of M. This number represe 
the size of the one sided Fourier transform $(m). Assuming a given sampling per1 
d[ and increasing M results in a reduction of the Fourier argument sampling period 
dy. As a consequence more Fourier components are available corresponding to the 
same argument interval and the selection process described above provides improved 
estimates of $(ldr sin 19~)/(&)‘. 

To see this more clearly consider a particular argument 1Ar sin oj and for simplicity 
assume that it is positive. This argument is to be approxim d by m&j, E) Aq. In this 
process 1 sin ej is replaced by m,(j, 1) Ay/Ar = m,(j, Z) The error involved is 
bounded by 

/ 1 sin t3, - m,( j, 1) N/Ml < N/2M, 

and it decreases as M is increased. Thus it appears advantageous to choose a 
sufficiently large value of M. In this way accuracy is enhanced while com~ntatio~ 
time is increased slightly. Further indications on the choice of M, N and S are given 
at the end of this section. 

For easy reference we have summarized the various expressions leading to the 
Fourier-Bessel transform in Table I. 

C. Determination of #(ZAr sin Bj)/(A[)’ by Linear I~t~r~oiatio~ 
The second method for the determination of $(lAr sin 6j)/(dZ;)2 from the availably 

Fourier estimates $(m) is based on linear interpolation. The reasoning closely follows 
that used above and will not be repeated. However, it is worth noting that it is 
necessary to replace the set of integers m,(j, I) by 

m,(L 0 = Intid(j, E)], j = 0, l,..,, S/2. (25) 

Here a particular m,(j, I> is obtained by rounding rk(j, 1) to the nearest integer so that 

m,(j,O < 4j, 4 < m,(j, 0 + 1. (26) 

With this definition it is possible to write 

$(lAr sin ej)/(KJ’ 

for j= 0, l,..., S/2, (27) 
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TABLE I 

1. Lets(<) designate the function under transformation. 
2. Choose the sampling periods AC and Ar to be such that A< Ar = 27r/N, 
3. Define?(n) as follows: 

P(n) =fWO n = o,..., M/2 - 1, 

P(n) = 0, n = M/2,..., M - 1. 

4. Choose M = 2y”, S = 2Ys, where yM and ys designate integers. 
5. Compute the one-sided discrete Fourier transform: 

M-1 
&n) = 2 f(n) neimn*n’M. 

n=o 

6. Define the set of angles: 

Qj = jn/S, j = O,..., S - 1. 

7. Calculate and store 

c(j) = (M/N) sin Sj for j = O,..., S/4. 

8. Set d(j, 0) = 0 for j = 0 ,..., S/2. 
9. Determine the new set d(j, I) from the old set d(j, I- 1): 

d( j, I) = d( j, I- 1) + c(j) for j = O,..., S/4, 

d(j, 1) = d(S/2 -j, 1) for j = S/4 + l,..., S/2 

10. Obtain 

m,(j, I) = Int[d(j, I) + $1 for j = O,..., S/2, 

m,(j,l)=M-mm,(S-j,l) for j=S/2+ l,..., S-l. 

11. Compute the Fourier-Bessel estimates from: 

E',(l) = $ '2' $[m,(j, l)] e-iw*n's. 
I-0 

12. Increment 1 and repeat from step 9. 

and 

~(Zflr sin IYJ/(AC)~ 

N q+z,(j, Z)] [m,(S -j, 1) + 1 - 4s -j, 01 

+ d~~,(j, z) + I 1 [d(s -j, z> - m,(S -j, 01 for .i= S/2 + 17-Y S - L (28) 
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where 

m,(j, I> = M - mL(S -j, I>, S/2+I<j<S-1. (29) 

D. Calculation of Even and Odd Transforms 

Even-order transforms may be determined with the same level of accuracy and an 
economy of computation time by making use of expressions (6) and (9) and (I 
Consider (lo), which serves as a detinition for G,&). Discrete estimates of this 
function are provided by: 

#(lAr sin Bj) cUikjnll/ 
Gf02 ’ CW 

where 9, = jr/V, j = - V/2 ,..., V/2 - 1. 
This approximation has the same level of accuracy as expression (17) if 

number of terms involved in the sum is half of that used previously, i.e., if V = S/2, 
Now, the rinite sum (30) may be split in two partial sums: 

+ $ ‘!S$ ’ 4(lAr sin ej> e-ijkn/V~ 

J-0 (AC) 2 

Replacing the summation index 
show that G,(Z) may be cast in 

of the first sum by j’ =,j + V, it is a simple matter to 
the following form: 

1 V-l 1 
G,(Z) =21/ J&‘. Y(j, I) epijk”‘“, 

where the function Y(j, I) is defined by 

Y(j, I) = #(ZAr sin LJj)/(AC)’ for j = 0, l,..., V/2 - I, 

= (-l)k 4(-1Ar sin b’,)l(A<)’ for j = V/2,..., Y - 1, 

with Sj = jr/P’ for j = 0, l,..., V - 1. 
Wow the finite sum (3 1) takes the form of a discrete Fourier transform when k is an 
even number. Indeed let k = 2p then 

where 

ri,(Z) = C?2p(l) = & “z’ Y(j, 1) e-ipi2nYy, 
J-0 

Y(j, I) = #(lAr sin 6j)/(A[)’ for j= 0, l,...: V/2 - 1, 

= 4(-ZAr sin Oj)/(AQ2 for j= V/Z,,.., V- 1. 
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These estimates may be obtained by performing a fast Fourier transform of size 
V= S/2 and the Fourier-Bessel transforms of even order are then computed by 
specializing (9) to k = 2p: 

&*(I) = G,(Z) + e-2*(Z) = ii,(Z) + A,-,(Z). 

Odd-order transforms may be obtained in a similar way but some additional 
calculations are involved. To see this let k = 2p + 1 then expression (3 1) becomes 

tip(Z) = G2*+ 1(Z) = $ "cl Y,(j, Z) eCipj2n'v, 
J--o 

(33) 

where the function !P,(j, I) is now defined as 

Y,(j, I) = e -iin’“#(ZAr sin 13,)/(&)” 

= -e-ij”‘v#(-ZAr sin 8,)/(Ac)’ 

for j = O,..., V/2 - 1, 

for j= V/2,..., V- 1. 

Clearly a*(Z) is a discrete Fourier transform but the function under transformation 
has been linearly phase-shifted. Odd-order Fourier-Bessel transforms are then 
deduced from 

~2*+1(0= ~2,+,(0 - ~-(2*+l)(o 

= H*(Z) - A,-,- l(Z). 

E. A variant of the Basic Algorithm 

Consider once more expression (30) and let V= S/2: 

#(ZAr sin 6,) e-ikj2rrlS 
(42 . 

This expression may be split in two partial sums. 

GkV) = -$ ,-If #(zAr sin dj) e - ijk2n/s 
J- S/4 (43 2 

+ $ ‘5’ “tz~~~ *j) ,-ikj2nlS. (36) 
J-0 

(35) 

Replacing the summation index of the first sum by j’ = j + S, it is possible to write 

G,(z) = f '2' y( j, I) e -ikjZn/S, 

j-0 
(37) 
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where the function !P(j, 1) is now defined by 

!F(j, Z) = #(lb sin 19~)/@[)” for j = Q,..., S/4 - 1, 

=o for j = S/4,..., 3S/4 - 1: 

= #(ldr sin ej)/(d&J” for j = 3S/4,..., 

where oj = j2ni.S for j = O,..., S - 1. 
This function contains S/2 zeroes and S/2 samples of #/(bt;)‘. 
Now e,(E) as given by expression (36) is a discrete Fourier transform of size S. 

Even and odd Fourier-Bessel transforms are then directly determined from: 

E,(l) = 6,(l) + (-1y G,_,(i) (38) 

The computation time required by this scheme is slightly less than that used in he 
direct calculation of $,J1). This is so because the sequence u/(j, I) contains S/2 
samples set equal to zero during the whole calculation. 

F. Guidelines for the Choice of M, N, S and L 

Certain guidelines may be given for the choice of the Fourier transform sizes M 
and S and of the numbers N and L on the basis of error analysis contained in efs. 
[X] and [Ill d an numerical tests performed by us and reported in part in Ref. [ 111. 

The size M of the intitial Fourier transform and the sampling period di must be 
chosen to obtain accurate estimates of i(m). This is a well-known problem an is 
discussed in great detail by Brigham [ 121. Note that accuracy increases as is 
augmented but computation time only increases like M log,M. Thus it is II- 
tageous to use fairly large values of M, typically of the order of 1024. 

The size S is fixed by similar considerations. The precision of the Fourier series 
estimates $JE) is determined by the choice of S. Mowever, computation time now 
increases approximately like SL log, S. 

The number of samples to be determined appears in this product so that S shoul 
not be too large. Typically S may be of the order of 5 12. 

There is a degree of freedom in the choice of N. To be consistent, N s 
selected smaller or equal to the size of the initial Fourier transform: N 
other restriction on N is N > 2L. If this condition is not satisfied the determination o’f 
the Fourier-Bessel estimates corresponding to arguments ri whose order is larger than 
N/2 cannot be carried through. 

Further details and a discussion of accuracy may be found in Ref. [ 111. 

4. EXAMPLES OF CALCULATIONS 

A small number of functions have known analytic Fourier-Bessel transforms of 
any order. Two such functions may be found in the tables assembled by Ab~arn~vit~ 
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and Stegun [ 131 and are used here to test the numerical algorithms developed in the 
previous section. 

In the first test case the computations carried along the lines of Section 3D for 
M = N = V = 5 12 provided even order transforms. In the second test we used the 
method of Section 3E with M = N = 5 12 and S = 1024 and even and odd transforms 
were obtained simultaneously. The linear interpolation method of Section 3C was 
adopted in these calculations because it is more accurate and only slightly increases 
computation time. 

As a first example consider the standard diffraction function: 

f(c) = sinc(b<) = sin(b[)/bc) (39) 

Fourier-Bessel transforms of f(i) may be derived from expression 11.4.38 of Ref. 
[13]: 

cos nk/2 Wdk 
Fk(r) = b*( 1 - y2/b*)‘/* [ 1 + (1 - r*/b*)‘/*]k for O<r<b, 

(40) 
1 

= b2(r2/b2 - 1)112 sin [k arcsin (b/r)] for b <r. 

These expressions are special cases of the discontinuous Weber-Schafheitlin integral. 
To obtain discrete versions of (39) and (40) it is convenient to express parameter b 

in terms of the sampling period d[. Let b = l/Q& then 

1.0 

0.5 

OS 

.b> = sin(4QYWQ). (41) 

I I I I I I 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ ++-+%+ 
+ ++ 
+ ++ +++,/~~ 
+ ++ +t++++ 

n 
I I I I I I 

20 40 60 80 100 121 

FIG. 1. Discrete samples of the sine function.&) = sin(n/Q)/(n/Q), Q = 5. . 
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L 
I 1 I I I 

20 30 40 50 60 

FIG. 2. Even-order Fourier-Bessel transforms of the function plotted on Fig. 1. Exact transforms are 
represented as solid lines. Estimates calculated by the modified algorithm of Section 3D, 
M=N=V=512,,5=64. (a)k=O,(b)k=2,(c)k=4,(d)k=14. 
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FIG. 2-Continued. 
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The corresponding sampled and scaled Fourier-Bessel transforms are obtrude 
from : 

Q” cos nk/2 w: 
FdE) = (1 _ wy [l + (1 - w;)‘l’]” 

= ( wz ~*l)I,z sin[k arc sin(l/W,)] for l<W,, 
I 

where W, = 2nQl/N. 
The sampled function (42) is displayed in Fig. 1 and corresponding even 

transforms up to order 14 appear in Fig. 2 as solid lines. Numerical estimates P,(I) 
are plotted on the same figure as discrete symbols. 

Fourier-Bessel transforms are clearly singular. They become infinite when 
reaches one and their jump across this point is also infinite. In such circumstances 
one cannot expect to have perfect agreement between exact and numerical ~ansforms. 
The numerical estimates initially oscillate around the exact transform. This behavior 
is observed for W, < 1 and it may be related to Gibb’s phenomenon. As I i~creasgs 
and W, becomes greater than one the error diminishes strongly and the ~urne~ica~ 
estimates nearly coincide with the exact transform. 

The second test function also yields a Weber-Schafheithn integral. Consider 

f(5) = sinc(K)/bC = sin(bC)/(b[)*. (436 

+31. +63. +95. 127 

FIG. 3. Discrete samples of the functionf(n) = sin(n/Q)/(n/Q)‘, Q = 5. 

581/44/2-3 
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0. . I I I I I I I 
0 +i5. +31. +47. 

a 
+63. 

1 
-50. I I I I I I I 

b 
0. +i5. +31. +4?. +E 

FIG. 4. Even and odd Fourier-Bessel transforms of the function plotted on Fig. 3. Exact transforms 
are represented as solid lines. Estimates calculated by the modified algorithm of Section 3E, 
M=N=512,S=1024,L=64(a)k=O,(b)k=l,(c)k=2,(d)k=7. 



FOURIER--BESSEL TRANSFORMS 

+25. 

f12. 

0. 

-12. 

-25. 
0. +15. +31. c47. 

c 

FIG. 4-Continued. 
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This function is infinite at 5 = 0 (Fig. 3) but the singularity does not appear in the 
calculation of the Fourier-Bessel transform becausef(LJ is premultiplied by 5. 

Analytical expressions of the transforms may be deduced from expression 11.4.35 
of Ref. [13]: 

1 Wb)k 
Fk(r)=& [l + (1 -r2/b2)l/2]k sin(7ck/2) 

for 0 <r < b, 

(44) 

= & sin [k arcsin(b/r)] for b < r. 

Sampled and scaled versions of (43) and (44) are, respectively, 

fW = sinWQ>/WQ>2 

and 

Fk(Z) = % 
K 

k 

1 + (1 - w#‘* I 
sin nk/2 for O< Wr< 1, (45) 

= -$ sin [k arcsin( l/ W,)] for l<W,, (46) 

where W, = 2nQl/N. 
The transforms are now continuous but their derivatives are not (Fig. 4). 

Nevertheless, the numerical estimates nearly coincide with the exact transforms and 
Gibbs phenomenon is in this case surprisingly weak. 

In conclusion we note that in two difficult cases corresponding to functions charac- 
terized by “peculiar” transforms, the numerical algorithms described in this paper 
yield acceptable transform estimates at a small expense of computation time. An 
important advantage of the present algorithms is that they resemble the fast Fourier 
transform. As a consequence they may be used with equal ease and require similar 
precautions in sampling and windowing the function under transformation. 
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